PHYSICAL REVIEW E 81, 051903 (2010)

Hysteresis and bistability in periodically paced cardiac tissue
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Hysteresis in periodically paced cardiac tissue is an important issue due to its relevance to cardiac arrhyth-
mias. In the present paper, the mechanism of hysteresis formation and the related properties are interpreted by
numerically investigating the phase I Luo-Rudy model. A formula calculating the width of hysteresis is
proposed and well confirmed by numerical simulations. We also find that hysteresis in cardiac tissue shows
several characteristics due to couplings among cardiac cells which are absent in a single cell. The influences of
the physiological parameters are studied in detail. The model dependence of hysteresis is elucidated by con-
sidering a number of well-known models of excitable media. Moreover, the influence of bistability on con-

trolling arrhythmias is revealed.
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I. INTRODUCTION

Hysteresis refers to memory or lagging effect, which has
been found in many physical, chemical and biological sys-
tems. Cardiac hysteresis was first reported by Mines [1], who
found that frog ventricles can show two possible patterns,
1:1 and 2:1, in response to a wide range of stimulation fre-
quencies. Hysteresis phenomena may occur in various car-
diac systems [2-6], and in action potential duration (APD)
restitution curves [7].

Hysteresis in periodically paced cardiac cell or tissue is
the major topic in the research of cardiac hysteresis. Hall et
al. [8] explored the prevalence of hysteresis in bullfrog car-
diac muscle in experiment and found two kinds of hysteresis:
the 1:1+2:1 hysteresis and the 2:2(alternans)«>2:1 hys-
teresis. Later, Yehia er al. [9] reported the detailed numerical
and experimental investigations of the 1:1+2:1 hysteresis
in a single cardiac cell. Walker et al. [5] observed hysteresis
between two kinds of alternans in guinea pig hearts. These
works indicated that hysteresis phenomena come from some
intrinsic properties of the cardiac myocyte. In order to inter-
pret the hysteresis phenomena, possible ionic mechanisms
[5,10] and nonlinear mapping models [11,12] were proposed.

Given the above theoretical and experimental studies on
cardiac hysteresis, there are still some problems that need
further investigations. Theoretically, a general dynamical
mechanism is still needed to interpret cardiac hysteresis. In
the previous works hysteresis was discussed in a single cell
[3,9,10] or tissue [5,6,8] separately, but the associations and
differences of hysteresis between a single cell and tissue are
rarely discussed. Furthermore, the influences of parameters
on cardiac hysteresis were partly discussed by some previous
works [3,6] but still lack an overall knowledge. Since many
excitable models were utilized to explore cardiac problems
[13-15], the model dependence of cardiac hysteresis is a
problem worth considering. Moreover, it has been found that
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hysteresis can induce arrhythmia [16], which is known as a
fatal disease in human beings. Much effort has been done in
controlling arrhythmias [17-20]. However, the evaluation of
the effects of hysteresis and bistability on cardiac arrhyth-
mias treatment is insufficient.

In this work, we study cardiac hysteresis with phase I
Luo-Rudy (LRd91) model [21] and obtain some results.
First, the mechanism and the condition of hysteresis in a
single periodically stimulated cardiac cell are demonstrated
by analyzing the properties of APD rate-dependence and
strength-interval (SI) dependence. In particular, we propose a
formula to calculate the width of hysteresis window, which is
a crucial characteristic quantity of hysteresis. The theoretical
results are well confirmed by numerical simulations. Second,
the results of a single cell are extended to one-dimensional
(1D) tissue. Some phenomena that are absent in a single cell
are found, such as bistability with two kinds of alternans and
space dependent hysteresis patterns. Third, the influences of
the parameters on hysteresis are investigated in 1D tissue,
and the understanding of these influences is helpful in pre-
dicting hysteresis in realistic cardiac systems. Finally, the
spiral waves control related to hysteresis in two-dimensional
(2D) cardiac tissue is illustrated.

The paper is organized as follows. In Sec. II we introduce
the model and methods. In Sec. III the mechanism of hyster-
esis in a single cardiac cell and the necessary condition for
its formation are elucidated. In Sec. IV we discuss hysteresis
in 1D tissue, and reveal several features being absent in a
single cell. In Sec. V the influences of physiological param-
eters on hysteresis are discussed. In Sec. VI the model de-
pendence and the relevance of hysteresis to controlling spiral
waves are illustrated. The last section provides a summary of
the results.

II. MODEL AND METHODS

The differential equation for the dynamics of the cell’s
membrane potential V,, (mV) is
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dv,
Cm_tmz_lion"'lst(t)’ (1)
where C,=1 wF/cm? is the membrane capacitance,
Lon(uA/cm?) is the total transmembrane ionic current and
I (uA/cm?) is the stimulating current. In LRA91 model, the
total ionic current /;,, is the summary of six individual ionic
currents

IiOn=INa+ISi+IK+IK1+IKp+Ib’ (2)

where INa= GNamShj(Vm_ENa)9 Isi: Gsidf(vm_Esi)’ IK
=GKXXi(Vm_EK)’ IK1=GK1K100(Vm_EK1)a IKp=GKpr(Vm
-Ex,), I,=Gy(V,,~E,;). Here m, h, j, d, f, and X are gating
variables and the evolvement of each of them satisfies

dy V==Y

dt 7

3)

where y represents any gating variable, 7, and y., are the time
constant and the steady state of y, respectively. The detailed
description of this model was given by Luo and Rudy in Ref,
[21]. Equation (1) is integrated by the explicit Euler method
with time step dfr=0.02 ms. The gating variable equation is
solved by the Rush-Larsen method [22]. All parameters are
set to be the same as the original LRd91 model unless speci-
fied otherwise.

Bifurcation diagram of APD vs pacing cycle length (PCL)
will be used to depict hysteresis and some other related phe-
nomena such as alternans. When PCL is changed downward
and upward in a loop, hysteresis can be formed in the bifur-
cation diagram.

III. HYSTERESIS IN A SINGLE CARDIAC CELL

It is known that the response of a cardiac cell to a long
PCL is in 1:1 synchronization. However, as PCL is de-
creased, 1:1 synchronization may lose its stability and the
response state can be substituted by Wenckebach period
(WP) (i. e. N+1:N), alternans and 2:1 for low, high and
intermediate magnitude of stimulating, respectively. In Fig. 1
we summarize the entrainment behaviors and find that hys-
teresis can emerge in the cases of direct 2:1 transition and
period doubling bifurcation for intermediate stimulating
magnitudes [Figs. 1(c) and 1(d)].

Hitherto two main approaches have been employed to in-
terpret cardiac hysteresis: the ionic mechanisms [5,10] and
nonlinear maps [8,9,12]. However, another approach can be
proposed to interpret hysteresis qualitatively and quantita-
tively. In Refs. [11,12,23], the detailed description of the
entrainment behaviors including hysteresis as shown in Fig.
1 was given by analyzing both ionic models and nonlinear
maps. It was concluded that APD and excitability of a car-
diac cell determine the bifurcation processes. Based on their
researches, we go further to study hysteresis phenomena in a
single cardiac cell by analyzing the properties of the dynamic
APD restitution curve (DAPDRC) and the strength-interval
curve (SIC).

APD restitution curve, representing APD as a function of
diastole interval (DI), was first introduced by Nolasco and
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FIG. 1. Bifurcation diagrams of a single LRd91 cell at G
=0.09 and Gg=0.705. Pulsatile stimuli with duration of 10 ms are
used. The pulse magnitudes [/ (uA/cm?)] are shown in figures. (a)
Bifurcations of 1:1+> WP<«2:1 without hysteresis for small /.
4:3 pattern in the WP region is shown in the small frame. (b) Bi-
furcations of 1: 1« alternans<« 2:1 without hysteresis for large /.
(c) Bifurcations of 1:1++2:1 with hysteresis. (d) Bifurcations of
1:1«alternans«2:1 with hysteresis.

Dahlen [24] and further developed by Guevara et al. [25]. Tt
is often used to predict the entrainment behaviors of cardiac
systems under repetitive stimulations [12], such as 1:1 syn-
chronization and alternans. In particular, DAPDRC is mea-
sured by the dynamic protocol: The system is paced at a
constant PCL until steady state (regular N:M entrainment) is
reached. After the DI-APD data pairs of the entrainment are
recorded, PCL is changed and the process is repeated. Note
that high enough amplitude of pacing should be used so that
the slope>1 region of the DAPDRC (if such a region ex-
ists), which relates to alternans, can be displayed. In Fig. 2(a)
only the entrainment responses of 1:1 and alternans (2:2) are
plotted to construct the DAPDRC for relevant analysis. Un-
der a certain PCL, the steady APD and DI is represented by
the intersection point of the DAPDRC and the line represent-
ing TPCL: TDI+ TAPD' Here TPCL’ TD], and TAPD stand for the
time length of PCL, DI, and APD in mathematical expres-
sions. Variation in PCL may cause movement of the intersec-
tion point and thus changes the steady value of APD. There-
fore, DAPDRC represents APD rate-dependence (i.e., APD
dependence on PCL). Moreover, there is another method
called S1S2 pacing protocol for measuring APDRC. The
S1S2-APDRC depends on the previous S1 pacing and is of-
ten used to evaluate the effect of a premature stimulus [26].
Under certain parameter and pacing conditions, S1S2-
APDRC is no longer invariant due to memory effect [6,7].
Vinet [6] partly attributed hysteresis to such a factor. How-
ever, the DAPDRC is unique while the memory effect is
implied by SIC in our approach.

The strength-interval curve depicts the minimum magni-
tude of the stimulus needed to induce an action potential
(AP) as a function of the so called S1S2 interval [27]. It is
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FIG. 2. Mechanism of hysteresis in a single cardiac cell. G
=0.09 and Gg=0.705. (a) DAPDRC representing APD rate-
dependence. The fact that the solid line moves to the dashed one
corresponds to the process in (b). The transition that point A jumps
to B corresponds to the process in (c). (b) Dynamics of PP, APD,
and SIC responding to PCL changes. If PCL is decreased, PP,
moves left to the empty circle PP’ and AP shrinks to the dashed
one. Accordingly the solid SIC moves to the dashed one. (c) The
process that SIC shifts rightward corresponding to the transition.
The frame in the upper right area is the blowup of the small squared
part. (d) The comparison of hysteresis width H measured from bi-
furcation diagrams (solid circles) and calculated by Eq. (4) (empty
circles). The small frame depicts width H as a function of the stimu-
lating magnitude.

created as follows: At first a stimulus (defined by S1) is
delivered and an AP is successfully elicited. Then another
stimulus (called S2) will be delivered at a wide range of time
intervals relative to S1 (called S1S2 intervals). Each S1S2
interval requires a threshold magnitude (1) of S2 above
which another AP can be elicited. Such a strength-interval
relation constructs the SIC. Therefore, the location of SIC
relies on the previous APD. Such dependence characterizes
the “excitability memory of pacing history” [28]. Under pe-
riodical pacing situation, every stimulus can be viewed as
S1, and S1 and S2 are identical. Then the time interval be-
tween any two successive stimuli (S1S2) is rightly the PCL.
The cell’s response to the change of PCL is determined by
SIC.

For clarity, we analyze the 1:1+-2:1 hysteresis, as
shown in Fig. 1(c). The pacing with S1S2=PCL and magni-
tude I=I, can be regarded as a pacing point (PP) in the
“S1S2-1” plane. The cardiac cell is initially paced by a long
PCL and is in steady 1:1 state. The steady APD is repre-
sented by the intersection point of the DAPDRC and the
solid line representing Tpcy. =T app+ Ty in Fig. 2(a). The PP
and its resulting APD are shown in Fig. 2(b) by the solid
circle labeled PP;.; and solid curve labeled AP, respectively.
The SIC depending on the solid AP is shown by another solid
curve labeled SIC. PP,.; is above SIC so that every stimulus
is able to induce an AP during pacing. If PCL is decreased by

PHYSICAL REVIEW E 81, 051903 (2010)

ATpc;, accordingly, the solid line in Fig. 2(a) moves down-
ward by ATpcr, and PP,.; in Fig. 2(b) moves left by ATpcy.
These movements lead to two cases:

Case 1: PP,.; moves left to the empty circle labeled PP’
[shown in Fig. 2(b)]. PP’ is still above the solid SIC so that
1:1 synchronization maintains. Meanwhile, the solid line rep-
resenting Tpcr, =T app+ Tpr shifts downward to the dashed
one, as shown in Fig. 2(a), so that the steady APD is reduced
by AT ,pp. After steady state is reached, the SIC also moves
left by AT spp according to the reduced APD (this phenom-
enon is known as rate adaption). The steady AP and SIC at
PP’ pacing is shown by dashed curves in Fig. 2(b). This
dynamical process can be illustrated as: PCL decreases
— PP moves left— APD reduces — SIC shifts left. This pro-
cess is repeated as PCL is decreased in 1:1 region. Since
ATPCL:ATAPD+ATDI and ATPCL>ATAPD? the mOVing dis-
tance of PP;.; at each PCL variation step is always larger
than that of SIC so that PP,.; tends to approach SIC left-
wards.

Case 2: there is a critical PCL. Once PCL becomes lower
than this critical value, PP,.; moves slightly left to PP’ which
locates below SIC [see the frame in the upper right area of
Fig. 2(c)]. In this case the external pacing can no longer
generate 1:1 response because its magnitude is smaller than
the threshold, and 2:1 transition occurs. In Fig. 1(c), the tran-
sition from 1:1 to 2:1 occurs as PCL is decreased from
PCL,.;,=288 ms to PCL,.;.=287 ms. The steady APD un-
der PCL=288 ms is represented by point A in Fig. 2(a) and
the SIC corresponding to the steady APD is shown by the
solid curve in Fig. 2(c). After the transition to 2:1 state, AP is
induced by 2PCL,.;.=574 ms and the steady APD is repre-
sented by point B in Fig. 2(a). The transition that point A
jumps to point B indicates enlargement of APD at the 1:1
—2:1 transition. Due to such APD enlargement, the SIC
jumps rightward to the dashed curve with an adaptive dis-
tance in Fig. 2(c). If PCL is increased now (PP’ is moved
rightward in Fig. 2(c) and the dashed SIC moves rightward
adaptively), we obtain 2:1 pattern in the original 1:1 region
because PP’ is below the dashed SIC in this region. The PP’
has to move rightwards a much larger distance to chase up
SIC and recover 1:1 state. The jumping backward of SIC
determined by APD enlargement at the 1:1—2:1 transition
point is the basic mechanism of hysteresis formation.

The above discussion indicates that APD enlargement is
necessary for hysteresis. APD enlargement is associated to
the slope of DAPDRC. If the slope is 0, APD is constant
despite of PCL variations and no SIC shift will occur. There-
fore, we obtain a necessary condition for hysteresis in a
single cardiac cell: the slope of DAPDRC must be larger
than 0. This condition guarantees the enlargement of APD
and the jumping backward of SIC at the bifurcation point so
that hysteresis may occur.

From the above analysis, we are able to derive an equa-
tion for calculating the width of hysteresis.

S ITPCLZ:IL-+H dTPCL
L+ f' [T (2Tpc) ]

TPCLZ: le

(4)

where § is the backward shift distance of SIC, H is the width
of the hysteresis window and f” is the slope of DAPDRC at
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the point that DI corresponds to the sTable II:1 solution. The
integral begins from the critical point at which 2:1 transition
occurs. The detailed derivation of Eq. (4) is given in the
appendix. Figure 2(d) shows the comparison results of the
hysteresis window width measured directly from bifurcation
diagrams and computed by the analytical formula Eq. (4).
The agreement is satisfactory. It should be noted that the
stimulating magnitude may change the width [see the small
frame in Fig. 2(d)] because, under different magnitudes, 2:1
transition may occur at different PCLs, and accordingly §
and f” in the integral interval are different due to the nonlin-
earity of DAPDRC. The advantage of Eq. (4) is that H can
be predicted without measuring point by point.

IV. HYSTERESIS IN ONE-DIMENSIONAL
CARDIAC TISSUE

In this section we extend the investigation to cardiac tis-
sue with diffusively coupled cardiac cells. For simplicity, we
take 1D tissue as our example, then Eq. (1) should be modi-
fied to be

IVu(x) = Tion + Iy(x,1)

+DV*V(x). (5)
at

We take D=0.001 cm?/ms and the space step dx
=0.028 cm for numerical simulations. In the simulations, no
flux boundary condition is used, and I(x,?) is applied at the
left boundary of the tissue in the form of sinusoidal stimula-
tion with amplitude 50 uA/cm?. The sampling data are re-
corded from the cardiac cell 4.2 cm distant from the pacing
site. The behaviors in 1D tissue are much more complicated
than those in a single cell [29,30]. In the following, we clas-
sify several different kinds of hysteresis.

NHA: no hysteresis but alternans can be seen.

H2A: hysteresis between two alternans states.

HA: hysteresis window in which either branch (1:1 or 2:1
branch) bifurcates to alternans.

HIP: hysteresis widow including an irregular region. “Ir-
regular” means that the response pattern looks chaotic and is
essentially different from WP which should occur between
1:1 and 2:1 states in the single cell case.

HD: hysteresis caused by direct transition between 1:1
and 2:1.

NH: no hysteresis but transition between 1:1 and 2:1 can
be seen.

The types of hysteresis NHA, HA, HD, and NH have
already been revealed in a single cell (see Fig. 1). In real
cardiac tissues, Hall et al. [8] found HA and HD and Walker
et al. [5] found H2A in the experiments. In this section, we
compare the hysteresis behaviors in a single cell and tissue,
and give a brief explanation of how the differences come.

Comparing the hysteresis loops in a single cell with that
in 1D tissue, we find that hysteresis in tissue occurs at lower
PCL. Taking the parameter set of G;=0.055 and Gg=0.705,
for example, we alter the pacing waveforms and magnitudes
to produce multiple hysteresis windows in both a single cell
and 1D tissue. It is found that the left boundary of the win-
dow locates lowest at PCL=86 ms for a single cell while
highest at PCL=73 ms for 1D tissue. This is because APD
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FIG. 3. Hysteresis in 1D cardiac tissue. Gx=0.705. (a) Bifurca-
tion diagrams of HIP (upper frame, G;=0.055) and H2A (lower
frame, G;=0.07). The data are measured at the point 4.2 cm distant
from the pacing site. (b) Spatiotemporal pattern of the irregular
region in HIP corresponding to the upper frame of Fig. 3(a). (c)
G,;=0.06. Different types of hysteresis recorded at different sites
for a same pacing loop. HA and HIP coexist in the tissue and even
HA itself can show multiple forms. (d) G;=0.06. Alternans and 2:1
response coexist in space under rapid pacing. Sites near the pacing
boundary show alternans. Waves with smaller APD damp along the
tissue (see the lower frame) and 2:1 response is identically realized
for all cells far from the pacing.

in tissue is shortened by the diffusion term. Besides, some
phenomena in 1D tissue which cannot occur in a single cell
are found: (i) HIP shown in Fig. 3(a) (upper frame labeled
“HIP”) containing an irregular region where the system’s re-
sponses look like chaotic and are different from WP. Figure
3(b) shows the spatiotemporal pattern of such a state. In fact
the pattern is periodic. (ii) H2A shown in Fig. 3(a) (lower
frame labeled “H2A”) illustrating hysteresis between two
kinds of alternans with different alternating amplitudes,
which was revealed experimentally by Walker ef al. [5] and
now is found by numerical simulations. (iii) Interesting space
dependent behaviors of hysteresis, i.e., the types of hyster-
esis at different space sites are different. Figure 3(c) illus-
trates this phenomenon by showing hysteresis patterns at dif-
ferent distances from the pacing site. In Fig. 3(d) we show
that under rapid pacing we can observe alternans near the
pacing site and 2:1 response far from the pacing site in the
same tissue.

Conduction velocity (CV) dispersion relation representing
the dependence of CV on DI is an important relation in tis-
sue. In conduction along the tissue, the actual pacing interval
of the ith cell Tpe (i) can be computed by

1 1
- - dx
{ U;f(f;it(TDl(x)) Vot [Tpi(x)] }
(6)

where v, [ Tpi(x)] is the velocity of the wave front as a
function of DI In 1:1 state vl [Toi(x)]=vho " [Tpi(x)]

Xi
Tpcp (i) = TpcL + f
X,

st
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and every cell has the same pacing interval Tpcy(i)=Tpcy.
With the decrease in PCL and the resulted variations in APD
and DI, velocities between successive wave fronts may be
different and Tpcy (i) can thus be greater or smaller than PCL.
Consequently, the APDs of cells along the tissue can also be
different due to rate dependence. If PP of a certain cell is
below its SIC, block occurs at this site. The above discussion
indicates that propagation block in cardiac tissue is associ-
ated to three factors: dispersion of velocity, APD restitution
property and coupling magnitude between cells. Wave propa-
gation in cardiac tissue were investigated in detail by Cour-
temanche et al. [31] and Comtois et al. [32]. Because of
block, there is sufficient recovery time for some coming
waves to pass, and APDs of these waves vary significantly.
That is why we can observe HIP behavior. Therefore, HIP
can be seen only in tissue due to spatiotemporal complexity.
For the similar reason, H2A and space dependent patterns
can never been observed in a single cardiac cell. Neverthe-
less, the precise mechanisms of H2A in excitable cardiac
tissue need further investigations.

V. INFLUENCES OF CARDIAC PARAMETERS

Since hysteresis influences the functions of realistic car-
diac systems, it is thus important to identify the parameter
conditions of hysteresis for some practical heart systems. Vi-
net [6] explored the influence of the potassium current theo-
retically. However, many ionic currents participate in form-
ing an AP. It is significant to characterize the effect of each
of the ionic currents on hysteresis.

In this section, we specify the parameter regions of car-
diac hysteresis in LRd91 model by analyzing the effects of
physiological parameters. This approach may be useful for
providing drug therapy [33] and giving some suggestive
ideas for hysteresis control. The simulations are performed in
1D tissue, and the data are recorded from the point 4.2 cm
distant from the pacing site. Through these discussions, we
may obtain an overall knowledge about how various realistic
physiological quantities can affect hysteresis phenomena.

In a cardiac system, parameters alternating the ionic cur-
rents may also change the AP shape and accordingly influ-
ence the hysteresis behaviors. There are six ionic conduc-
tance parameters that govern the six fully activated ionic
currents in the LRd91 model. The six conductance param-
eters are: Gy, Gy, Gy, Gk, Gy, and Gy, and the corre-
sponding six currents I, I, Ix, Igi, Ing, and Ig, can affect
certain AP phases effectively [34]. The effects of the param-
eters on hysteresis are shown in Figs. 4 and Fig. 5. In Figs. 4
and 5, the six conductance parameters are changed in the
intervals practical for realistic guinea pig hearts. These pa-
rameters can influence the type and the width of hysteresis
by altering the DAPDRC slope. The results obtained in Figs.
4 and 5 can be summarized as: (i) the influences of the con-
ductance parameters on hysteresis can be ranked as Gg;
>G> Gg> Gk > Gy, > Gg,. Among them, G, and Gy,
are the strongest and weakest parameters, respectively; (ii)
There is a common sequence for the appearance of various
types of hysteresis, which is actually determined by the
DAPDRC slope: NHA —H2A —HA —HIP—HD— NH.
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FIG. 4. (Color online). Influences of G (0.01-0.08) and G,
(0.01-0.08) on hysteresis. Gx=0.705 The parameter ranges are
practical for realistic guinea pig hearts. (a) G,=0.03921. NHA and
H2A are observed for G;=0.08 and G=0.07, respectively. (b) and
(¢) G,=0.03921. HA—HIP—HD — NH occur in sequence in the
G; range between 0.06 to 0.01 and the hysteresis windows shift
leftward as G; decreases. (d) G;=0.055. Influence of parameter G,
The hysteresis behaviors are similar to that of G variations with
NH being absent here. The absence of NH in (d) indicates that
hysteresis cannot be eliminated by adjusting G,, only.
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hysteresis. G;=0.055 and G,=0.03921. (a) and (b) Gk and Gg; are
varied between 1.2 and 0.2. The windows are pushed leftward by
the increase in the parameters. H2A is seen at Gx=0.4. (c) Gy, has
much weaker influence on hysteresis in comparison with G, Gy,
Gk and Gg . Nevertheless, HIP can be eliminated by decreasing
Gy, Hysteresis window is shifted to the left much more gently by
decreasing Gy, than that in (a) and (b). (d) The type of hysteresis
remains invariant when Gy, is varied in a wide range.
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FIG. 6. (Color online). Parameter domains of various types of
hysteresis in G-G), plane (a) and Gg-Gg, plane (b). Gx=0.705.
From these figures the appearance sequence of various types of
hysteresis can be seen. (c) and (d) show the effects of G; and G,
on the DAPDRC slope. G; has a much stronger effect than Gy, so
that G; alters hysteresis behaviors much more intensely than G,

This sequence is shown clearly in Figs. 4(a)-4(c) when the
slope decreases as G reduces; (iii) H2A could be obtained
only by adjusting Gy, G,, and Gk [see Fig. 4(a) for Gy
=0.07, Fig. 4(d) or G,=0.02 and Fig. 5(a) for Ggx=0.4].
Walker [5] concluded that H2A is closely associated with the
intracellular calcium cycling. The results in our numerical
simulations suggest that hysteresis of alternans may also be
influenced by potassium currents; (iv) variations reducing the
DAPDRC slope push the left boundary of the corresponding
hysteresis window leftwards. The left boundary of the win-
dow is determined by the smallest APD in 1:1 entrainment,
so any variations shortening APD facilitate 1:1 maintenance
and push the hysteresis window leftwards.

In Figs. 6(a) and 6(b), we show the parameter domains of
hysteresis in G4-G,, (the two physiological quantities influ-
encing the hysteresis behaviors mostly) and Gg-Gy, (one
mostly and one least) planes, respectively. Although multiple
types of hysteresis coexist in the tissue, beyond a certain
distance from the pacing site (no more than 1 c¢m), cells in
the tissue show the same type of hysteresis for a fixed set of
parameters. We take this asymptotic behavior as the result.
These diagrams give the instructive information about where
one can find certain types of hysteresis and how one can
control hysteresis phenomena by alternating parameters. The
appearance order of various types of hysteresis is clearly
shown in Figs. 6(a) and 6(b). Moreover, Fig. 6(b) verifies the
previous conclusion that parameter Gg,, has very weak influ-
ence on hysteresis. Most importantly, we find that G is the
only parameter for eliminating hysteresis [shown by the bot-
tom lines in Figs. 6(a) and 6(b)]. At sufficiently low G the
DAPDRC becomes flat and the SIC jumping is small so that
the spatial diffusion can easily erase hysteresis. However, in
the NH region of the tissue, we can still observe hysteresis in

PHYSICAL REVIEW E 81, 051903 (2010)

a single cell. According to this observation we expect that
bistability in a cell is a necessary but not sufficient condition
for bistability in tissue. The effects of G; and Gg,, on DAP-
DRC slope are shown in Figs. 6(c) and 6(d). Figure 6 verifies
the restitution of APD is the main contributor to hysteresis
by revealing that: the more effectively the parameter acts on
the repolarization and duration of action potential, the more
greatly it influences hysteresis.

Pacing parameters, such as pacing waveform and ampli-
tude, can also influence hysteresis in cardiac tissue [3]. We
have used square and sinusoidal waveforms with different
amplitudes and find that these factors can only change the
width of hysteresis window or shift the parameter domain of
hysteresis. The characteristics of cardiac hysteresis are not
essentially changed by the pacing parameters.

VI. MODEL DEPENDENCE OF HYSTERESIS
AND THE RELEVANCE OF BISTABILITY
IN PACED CARDIAC SYSTEM
TO SPIRAL WAVE CONTROL

In the above sections, hysteresis behaviors of LRd91
model are investigated in detail. There are many models of
excitable media describing cardiac or chemical reaction dy-
namics. It is thus interesting to study whether the hysteresis
behaviors are popular in the excitable media.

We have studied a number of excitable media and find
surprisingly that the models mainly used for describing car-
diac dynamics, such as Beeler-Rueter model (BR77) [35]
and canine ventricle model (CVM) [36], exhibit clearly hys-
teresis features like LLRd91 model, while other models,
which describe general excitable media, such as Bér [37] and
FHN models [39], can never show hysteresis. The mecha-
nism underlying the model dependence of hysteresis is heu-
ristically explained in Fig. 7. According to the analysis in
Sec. III, a necessary condition for hysteresis is that the DAP-
DRC of the given system must have slope larger than 0, so
that APD can enlarge when 2:1 occurs and hysteresis can
take place. Figure 7 shows DAPDRCs of various excitable
models. Figures 7(a)-7(d) exhibit DAPDRCs of cardiac
models with slope greater than 0 [see Figs. 7(a) and 7(c)] and
the corresponding hysteresis [see Figs. 7(b) and 7(d)]. In
Figs. 7(e) and 7(f), DAPDRCs of the general excitable mod-
els are in a flat shape with slope being approximately 0. This
is the reason why hysteresis occurs in certain cardiac models
but not in some general excitable models.

Physically, arrhythmias control is to suppress spiral and
turbulent waves (corresponding to ventricular tachycardia
and ventricular fibrillation in mammal heart [40]) in cardiac
tissue [17,18]. Although hysteresis may violate the ordered
heart thythm [16], it can also help to recover the normal
heart rate. In the previous works of controlling arrhythmias
[19,20] such a factor was rarely noticed. In the following, we
will show how hysteresis and bistability “help” arrhythmias
control in LRd91 model.

We use the boundary overdrive pacing (BOP) method
which has been widely used in experiments and theoretical
works [19,20] as a low damage control method. The proper
pacing frequency is often chosen before the action from the
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FIG. 7. Model dependence of hysteresis behavior. Parameters of
the models are set to be the same as their original forms except:
G,=0.05 (BR77 [35]); PCa_=1.26% 105 (CVM [36]); a=0.84, b
=0.07 and £=0.06 (Bdir [37]); B=0.7, y=0.5, and €=0.302 (FHN
[38,39]). All the simulations are performed in 1D tissue. (a) and (b)
DAPDRC of BR77 model and the corresponding hysteresis. (c) and
(d) DAPDRC of CVM model and the corresponding hysteresis. (e)
and (f) DAPDRCs of Bér and FHN models with slope approxi-
mately equals to 0.

“drive-response” relation because the successful BOP control
must satisfy the condition that the controlling waves induced
by the pacing signals must have frequencies higher than
those of spiral or turbulent waves [20,41]. This is because of
the rule that fast waves win the competition against slow
waves in all excitable media. From Fig. 8(a), it seems that
the spiral or turbulent waves with frequency f,; can never be
controlled, because the frequency is higher than the maxi-
mum frequency f,.x produced by the BOP method in the
given LRd91 tissue. However, to our surprise, we did suc-
ceed to suppress spiral waves of f,>f, ... The key mecha-
nism underlying this phenomenon is the bistability behavior
in the cardiac tissue.

Though the drive-response curve of Fig. 8(a) shows the
maximum frequency f,,., lower than that of the spiral waves
(the target to be controlled), there is another branch of hys-
teresis shown in Fig. 8(b) by empty circles where the fre-
quencies of the controlling waves 1:1 synchronize to the pac-
ing. Thus the frequency of the controlling waves (CWs) can
be higher than that of the spiral waves (SWs), and the higher
frequency can be realized under the initial condition of SWs
(not under the initial rest state). These pacing-generated
waves can successfully suppress the SWs.
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FIG. 8. Drive-response curves in LRd91 model. G4;=0.035,
Gk=0.705 and the other parameters are the same as Ref [21]. The
frequency of spiral waves is f;=19.7 Hz. (a) Drive-response rela-
tion of the tissue measured from the homogeneous rest state. The
spiral waves frequency f is slightly higher than f,,,,. (b) Bistability
obtained from initial condition of spiral waves. Empty circles en-
large the 1:1 region where the response frequencies can be higher
than f,., and f,.

Figure 9 shows our experiment in 2D tissue. First, we use
BOP with frequency f.=22.4 Hz on the left boundary to
produce a train of CWs in the rest cardiac tissue. The CWs
propagate with frequency f.,=0.5f,. for 2:1 entrainment. At
t=1.5 s a plane wave front is cut and SWs develop after
then. This process simulates the situation that CWs encoun-
ter SWs during propagation. The frequency of the SWs is
fs=19.7 Hz>f.,=0.5f, (f.=22.4 Hz) so that SWs defeat
the CWs and occupy the whole tissue eventually. However,
after the SWs invade the pacing region, the CWs are per-
turbed and flip to 1:1 branch, and then the CWs obtain the
frequency f, higher than that of SWs (f.> f,). From =4 s,
CWs start to eliminate the SWs. At r=14 s the CWs defeat
SWs completely and the control is realized. The process in
Fig. 9 virtually shows that CWs lose first and win at last due
to the bistability of the response behavior.

VII. SUMMARY

In summary, we studied the problem of hysteresis in car-
diac systems. By numerical simulations and theoretical
analysis the following major results were achieved.

L LG

(b) t=1.5 (c) = (d) =25

2 :— ]
(e) t=4s (f) t=5s (g) t=8s (h) t=14s

FIG. 9. (Color online). The process of how bistability help con-
trol. The tissue size is 420 X 420. G;=0.035, Gx=0.705. The BOP
is in sinusoidal waveform with frequency f.,=22.4 Hz and ampli-
tude 50 mA/cm? (a) CWs propagate with a frequency fq,
=11.2 Hz for 2:1 response. (b) At r=1.5 s a plane wave front is
cut. (c) SWs develop after then with a frequency f,=19.7 Hz. (d)
Att=2.5 s SWs fully develop and defeat CWs because f,> f.,. (¢)
As the CWs flip to 1:1 branch and obtain a higher frequency f.
> f,, CWs gradually invade the tissue again. (f)—(h) CWs compete
with SWs and CWs control the whole tissue at last.

051903-7



HUANG et al.

First, by analyzing DAPDRC and SIC properties in the
single cardiac cell system, we revealed the necessary condi-
tion for hysteresis: the slope of DAPDRC must be larger than
0. Based on this condition we obtained a formula to analyti-
cally calculate the width of hysteresis. The theoretical results
are satisfactorily confirmed by the numerical results.

Second, we further studied 1D cardiac tissue and ob-
served some phenomena including HIP, H2A and space de-
pendent hysteresis, which cannot be found in a single cardiac
cell. The reason is that the spatiotemporal complexity plays
key roles in generating all these characteristics of hysteresis.

Third, we investigated how different physiological param-
eters influence hysteresis behaviors. We ranked the influ-
ences of various physiological parameters in such an order:
Gi>G,>Gg>Gg > GN,> Gy, Moreover, we  also
roughly ordered the sequence of the appearance of various
types of hysteresis as NHA—H2A —HA —HIP—HD
—NH, corresponding to the DAPDRC slope reduction.
These understandings are significant for dealing with the
hysteresis problems in practical cardiac systems.

Finally, we found that hysteresis phenomenon is strongly
model dependent in excitable media. It is common in excit-
able models describing cardiac dynamics but it cannot be
observed in some simplified while very popular excitable
models. The dynamical mechanism underlying this model
dependence is heuristically explained by the slope of the
DAPDRC:s of different models.

The problem how to treat arrhythmias is a challenging
problem. Results in the present work show that the hysteresis
behavior may have effect on promoting spiral waves control.
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APPENDIX: DERIVATION OF EQ. (4)

To obtain Eq. (4) is essentially to solve a traditional chas-
ing problem. The “time” for PP chasing up SIC at distance S
is the width of the hysteresis. It depends on the “velocity”
difference between PP and SIC. The fact that PCL increases
by ATpcy, is equivalent to the fact that PP shifts a distance of
ATpcy, so that the velocity of PP is

Upp= =1.

ATpcr

Because of the rate-dependence, ATpc;, prolongs APD and
makes SIC walk a corresponding distance on the same direc-
tion. If we take the walking distance of SIC to be approxi-

mately the prolongation of APD, the velocity of the SIC is

Tapp(2Tpcr, + 2ATpcr) — Tapp(2Tpcr)
2ATper,

Usic =

b

where factor 2 is because of 2:1 state. The relation among the
time lengths of PCL, APD, and DI is
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2Tpcr = Tapp(2Tpcr) + Toi(2Tpcr)
so that

2ATpcr = Tapp(2Tpcr, + 2ATpcr) = Tapp(2Tpcr)
+ Tpi(2Tper, + 2ATpcr) = Tri(2Tpcr) -

Dividing the equation by  Tapp(2Tpc+2ATpcr)
—Txpp(2Tpcr), and assuming ATpcy, to be sufficiently small,
we can obtain

1 1

=l+——
Usic f (Tpy(2Tpcr)

with f" being the slope of DAPDRC at the point that DI
corresponds to the sTable II:1 solution. We can see that vgc
is always smaller than 1 so that PP can chase up SIC at
sometime.

The time H for PP chasing up SIC (width of hysteresis)
satisfies

Tecry, tH
§= (vpp—vsic)dTpcr,
Tpcry,),

TPCLZ: 1 ('+H
= 1
Tpcry, ¢
dTPCL

IZTPCLZ:]“+H
- 1+ f'[Tpi(2Tpc)]

2Tec,,,

_ ST } "
L+ f[Toy(2Tpe)] )

(A1)

Furthermore, there is another approach to calculate H with-

out integrals: As we have already discussed in Sec. III, the

location of SIC corresponds to the previous APD. Thus the

location of each point on SIC can be given by
Lsic=Tapp+ R(Iy).

Note that R(I,,) may vary with I,,, but it remains to be a
constant once [, is set to be a benchmark equal to the pacing
magnitude /;, and can be determined from one measurement.
At the critical point of transition from 1:1 to 2:1, PP locates
at PCL,.;, and the steady APD is TAPD(ZTPCLZ‘IC), so that SIC

locates at
Lgico:1e = Tapp(2Tecr,,, ) + R(Iin).-

The distance that PP has to walk to chase up SIC is the width
of hysteresis H. H satisfies

Tycr,, +H=Lsico1c+ AT app,
where
ATapp= TAPD[E(TPCLZ:IC +H)]- TAPD(ZTPCLNC)
Combining the above equations we obtain
Tecr,,, +H=Tapp[2(TecL,  +H)]+R(Iy). (A2)

Both Egs. (A1) and (A2) calculate H and they are essentially
the same.
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